Differentially expression of Tua1, a tubulin-encoding gene, during flowering of tea plant Camellia sinensis (L.) O. Kuntze using cDNA amplified fragment length polymorphism technique.

نویسندگان

  • Wan-Ping Fang
  • Chang-Jun Jiang
  • Mei Yu
  • Ai-Hua Ye
  • Zhao-Xia Wan
چکیده

The complementary DNA (cDNA) amplified fragment length polymorphism technique was used to isolate transcript-derived fragments corresponding to genes involved in the flowering of tea plant. Comparative sequence analysis of an approximately 300 bp differential fragment amplified by primer combination E11M11 revealed 80%-84% similarity to the corresponding part of an a-tubulin gene of other species. The complete cDNA sequence of this a-tubulin was cloned by the rapid amplification of cDNA ends technique; its full length is 1537 bp and contains an open reading frame of 450 amino acid residues with two N-glycosylation sites and four protein kinase C phosphorylation sites. The deduced amino acid sequences did show significant homology to the a-tubulin from other plants that has been reported to be a pollen-specific protein and could be correlated with plant cytoplasm-nucleus-interacted male sterility. We named this complete cDNA Tua1. The nucleotide and amino acid sequence data of Tua1 have been recorded in the GenBank sequence database. This Tua1 gene was cloned into the pET-32a expression system and expressed in Escherichia coli BL21trxB(DE3). The molecular weight of expressed protein was deduced to be approximately 49 kDa. Western blot analysis was used to identify the temporal expression of Tua1 in tea plant. Further studies of the effect of Tua1 protein on pollen tube growth indicated the Tua1 solution obviously promoted the growth of tea pollen tube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expressed sequence tags from organ-specific cDNA libraries of tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camellia species

Tea is one of the most popular beverages in the world and the tea plant, Camellia sinensis (L.) O. Kuntze, is an important crop in many countries. To increase the amount of genomic information available for C. sinensis, we constructed seven cDNA libraries from various organs and used these to generate expressed sequence tags (ESTs). A total of 17,458 ESTs were generated and assembled into 5,262...

متن کامل

Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach.

Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. Forward and reverse suppression subtractive hybridization (SSH) libraries were developed to identify and characterize the genes associated with bud (banjhi) dormancy in tea (Camellia sinensis (L.) O. Kuntze). Efficiency of subtraction was confirm...

متن کامل

Transcriptome-Based Analysis of Dof Family Transcription Factors and Their Responses to Abiotic Stress in Tea Plant (Camellia sinensis)

Tea plant (Camellia sinensis (L.) O. Kuntze) is affected by abiotic stress during its growth and development. DNA-binding with one finger (Dof) transcription factors (TFs) play important roles in abiotic stress tolerance of plants. In this study, a total of 29 putative Dof TFs were identified based on transcriptome of tea plant, and the conserved domains and common motifs of these CsDof TFs wer...

متن کامل

Expression of caffeine biosynthesis genes in tea (Camellia sinensis).

Using semi-quantitative reverse transcription-PCR, we studied the expression of genes encoding caffeine synthase (TCS1), inosine-5'-monophosphate dehydrogenase (TIDH), S-adenosyl-L-methionine synthase (sAMS), phenylalanine ammonia-lyase (PAL) and alpha-tubulin (Tua1) in young and mature leaves, stems and roots of 4-month-old tea seedlings and young and old tea tissue cultures. The amounts of tr...

متن کامل

Genetic integrity of somaclonal variants in tea (Camellia sinensis (L.) O Kuntze) as revealed by inter simple sequence repeats.

Adoption of inter simple sequence repeats (ISSR) technique to analyze the genetic variability of somatic embryo derived tea plants was evaluated. Morphological characterisation of the field grown plants revealed no identical character aligning with the parent, UPASI-10. Out of 40 primers, 15 exhibited concurrent polymorphism were selected for the study. Genetic variability of somaclones derived...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 38 9  شماره 

صفحات  -

تاریخ انتشار 2006